If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.4x^2+19x=50
We move all terms to the left:
0.4x^2+19x-(50)=0
a = 0.4; b = 19; c = -50;
Δ = b2-4ac
Δ = 192-4·0.4·(-50)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-21}{2*0.4}=\frac{-40}{0.8} =-50 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+21}{2*0.4}=\frac{2}{0.8} =2+0.4/0.8 $
| -108=4x+6(3x+15) | | 6=z+32/7 | | -4x-6=-6-3x+2x | | 17g=-17 | | b=1.8 | | 15x+5=25x+5 | | 5(q-4)-2q=4 | | 1.65=f/2 | | 40=10x+20 | | 9x-3+×=8 | | 5(b-3)+10=3(b+2)-1 | | V(x)=(11+-2x)(17+-2x)(x) | | -9s+4s+18=-17 | | 7-8x=9x-11+19 | | 2(4x–10)=-7 | | 3x5+x2=4 | | V(x)=(11+-2x)(17+-2x) | | 3=k-14÷2 | | s-(-7.2)=12.6 | | 3x-4.3=7.5 | | x/14=2/28 | | 16.8=1.4x | | 5/4(x+4/3)=-12/115 | | 8=-2r+-8 | | 9a=-5a-42 | | (6y+12)=(9y+18) | | 3x-2=(x-7) | | 2x-1/5=~3 | | -11b=-88 | | 81= 9a+819a+81 | | 6x+4(-3x+2)=44 | | 3x+16=8-3(x+4) |